
1

Design Automation Model for Application-Specific
Processors on Reconfigurable Fabric

B. Kurumahmut, G. Kabukcu, R. Ghamari and A. Yurdakul
CASLAB, Computer Engineering Department, Boğaziçi University, İstanbul, Turkey

{roza.ghamari, yurdakul}@boun.edu.tr

Abstract—The process of embedded system design on reconfig-
urable architectures needs smart solutions to reduce development
life-cycle and to use resources efficiently at run-time. Current
solutions are insufficient to enable the embedded system designer
to reflect the flexibility that a reconfigurable architecture can
offer. Some of the basic problems are lack of flexible operator
definitions, very detailed hardware abstraction procedures, a few
or no constraints for tasks or loops at the high-level of design
abstraction.

In this paper, we propose a new model for automated design of
application-specific processors in run-time reconfigurable archi-
tectures, solving the aforementioned inefficiency problems. Based
on the proposal, a design language, a framework and a compiler
have also been developed.

I. INTRODUCTION

In the embedded systems arena, there are hundreds of
microcontrollers from different manufacturers. However, it is
usually impossible to find a microcontroller that exactly meets
all requirements of an embedded system. As a result cus-
tomizable processors [8], [22] have started to appear. On the
other hand, reconfigurable devices have a significant place in
embedded design domain. Consequently, soft-processors [1],
polymorphic processors [25], [23], [11] are proposed. These
processors can be tailored to meet the exact requirements of
an embedded system. Some of them extends the instruction
set while preserving the basic instruction set [8], [22], [1]
while newer ones modify the instruction set by removing
unused instructions and/or introducing new instructions [25],
[23] or design the complete application-specific instruction set
[11]. Most of them support the customizations to be done
prior to execution while the newer ones support run-time
customization of the instruction set.

There are also design entry tools [8],[26],[21],[19]. The
following discussion can be carried out for those tools 1) The
design tools require detailed hardware definition for the new
instructions. Some tools invoke them with function calls which
makes embedded programming a confusing issue. ADRES
[11] uses a 32-bit three-input/output functional template to
define all operations since ADRES is a coarse grain array.
As a result, the resources of ADRES are underutilized for
simple operations. 2) They use programming languages (like
C, C++) as they are or extend them. Usually retargetting of the
compiler has to be done manually. In some tools, the designer
designs the instructions and determines very low details like
opcode, operand fields. DRESC provides a parametic template

This work has been fully supported by the Turkish Foundation of Science
and Technology, under Research Project Program (pr. no:104E038)

for instruction generation since the underlying architecture,
ADRES, is fixed. However, in all of these tools the instruction
set is fixed by the user. DRESC allows architecture exploration
but instruction generation is not mentioned. 3) Retargettable
compilers map the built-in operations of the language to
the built-in operators of the underlying processor which is
assumed to be static during runtime. For example, if the
underlying processor is a scalar one, then "+" operation of
C will be mapped to the ALU that makes scalar addition. For
a vector addition, a new instruction has to be generated and
this must be invoked via a function call. When the underlying
processor is a runtime reconfigurable one, these tools cannot
benefit from this utility of the device. For example, the
designer cannot set "+" as a scalar adder in one loop and as a
vector adder in another loop. 4) They do not enable the user
to define timing and resource constraints. If the design does
not meet a constraint, then the overall design process has to
be revised. Today, design tools for programmable processors
[7] support code optimization according to user constraints.
However, the tools for reconfigurable ones do not have such
an option.

Based on these observations we propose that a new model
and a language must be used for embedded systems on
reconfigurable systems. The issues that necessitates a new
language are explained in the following section. Then we
explain our model, RH(+), which is general enough to handle
the run-time reconfigurable processors as well as other types of
customizable soft processors and hard processors (Section III).
Based on this model, we developed a new language, LRH(+)
which allows the embedded system to be designed with a
single language, a framework, FRH(+) which satisfies the
basics set by our model, and a compiler which retargets
itself automatically by using the templates generated by the
instruction set genertation tool (Section IV). A design example
is presented in Section V. In the last section, we explain the
current status of our project and summarize our future work

II. LANGUAGES FOR CUSTOMIZABLE PROCESSORS

Traditionally, programming languages, like C, C++, Java
are selected for developing embedded applications. They are
also extended to support hardware elements of a system.
SpecC, SystemC, Handel-C and Impulse-C are some of the
extended-C languages [20], [14]. An embedded design has
to be specified to exploit the properties of the target ar-
chitectures. Today, the most popular extended-programming-
language for hardware design is SystemC [14]. There are

2

SystemC-based approaches use a protoyping tool that can
estimate area, execution time and reconfiguration overhead
[13]. Moreover reconfiguration can be automatically triggered.
However, the user-defined system specification constraints like
resource and timing constraints, in SystemC [10]. Besides,
it does not allow processor customization [18]. Another C-
variant language, which is includes design of both hardware
and software portions, is SpecC [20]. However, like SystemC,
SpecC does not have the features like mapping, estimation and
system constraint definition. Impulse-C and Handel-C use C-
to-gates tools for architecture mapping to FPGAs. Although
they are capable of generating hardware using some units
automatically, the software code needs optimizations after
compilation [2]. Some low-level timing optimizations are
available in Handel-C; however, there is no optimization fea-
ture in Impulse-C [2]. Moreover, the operations are predefined
in Handel-C; therefore, the reconfigurable system designer
encounters with limitations during application development.
Extension of programming languages requires modifications in
standard compilers inorder to be able to separate the hardware
and the software.

The modeling languages have also been proposed for mod-
eling embedded systems. SDL and UML [5], are some of the
well-known examples. However, their cores are inappropriate
to use them as solutions for automatic synthesis. Thus, the
community has proposed extensions to adapt them to the
applications on reconfigurable hardware xUML [17], xtUML
[12]. GASPARD is a platform that inrtoduces synthesis and
reconfiguration to a UML-based model MARTE [16] but it
cannot be used to generate custom reconfigurable processors.
Hence the modeling languages must only be used as represen-
tation languages to express the design visually.

In the literature, extending the standard tools is called
as retargetting. To retarget existing tool suite, architecture
description languages (ADL) are used . However, they need
low-level details which are irrelevant for software development
level. For example MIMOLA models target hardware in a
similar manner to VHDL. Thus, it explicitly [6] requires
definition of hardware modules with their behavioral algo-
rithm and detailed interconnection scheme between modules.
MIMOLA has problems with complex instructions because
it is difficult to extract complex instructions from MIMOLA
descriptions. As a result, the quality of the produced code is
low [9]. nML is another example of formalism which generates
description based on both structural and behavioral model,
and is applicable for retargetting code generation [6]. The
main disadvantage of nML is that it requires low-level details
to define target architecture. These are behavior, assembly
language mnemonic, and binary code of the instructions which
are constructed by using predefined operators. LISA [26] is
an enhanced ADL compared to nML. However, it has the
disadvantage that it requires behavioral description of the
extended instructions as nML. In both nML and LISA, new
operators (instructions) can be created in two ways. Firstly,
predefined operators (+, -, *, etc.) are used to create new
operators. Secondly, these created operators can be used to
create more complex operators. In an application, both types of
operators for the same functionality can be created. Software

designer can choose the one providing more efficient solution.
However, if software designer uses nML or LISA, he will
have a huge work overhead while switching between these
two types of implementation. The basic reason is that nML and
LISA force the user to give different operator names for each
type of implementation. Thus, designer must scan all lines in
software, find each references to the operator, and replace it
with new name. DRESC uses a parametric template which
can be used by the designer to decide on the instructions.
Instruction level parallelism is automatically established by
DRESC.

III. RH(+) MODEL

To solve the above-mentioned problems of current design
languages, we propose a model, RH(+), for embedded sys-
tem design on run-time reconfigurable architectures like FP-
GAs that support dynamic reconfiguration [24]. RH(+) stands
for hardware/software co-design on reconfigurable hardware.
Based on this model, we propose a new language, LRH(+)
which utilizes run-time processor customization and applica-
tion development in a single language.

A. Abstraction of Low-Level Details for Instruction Set

For embedded system on reconfigurable hardware, we be-
lieve that users should not deal with the details about instruc-
tion due to the flexibility of the target hardware. In RH(+),
smallest instruction corresponds to an operator. For each oper-
ator, it must be sufficient for the designer to enter the number
of inputs and outputs of the operator. For example, assume
two instructions: A and B. Instruction A might have 2 inputs,
and 1 output (e.g. scalar addition) and instruction B might
have 8 inputs, and 4 outputs (e.g. matrix multiplication of
two 4-by-4 matrices). Operators can be combined to generate
complex instructions. Complex instruction generation can be
done either by the user or left to the design automation tool
that generates the optimum instruction set for the application
and its imposed constraints.

B. Flexible Operator Definition

Reconfigurable hardware comes in with different on chip
resources. This means that fixing built-in operators in a
language for customizable soft processors will hinder the flex-
ibility offered by reconfigurable hardware. Moreover, different
applications require different operations. For example, in FIR
filtering, there is vector multiplication (inner product). On
the soft-processor, the hardware units for this application can
be one of the following: 1) a multiplier and an ALU, 2) a
multiply-accumulate unit and an ALU, 3) an inner product.
Note that in all of them, there is no operation requirement
like subtraction or shifting. Therefore the instruction set of
the soft-processor will consist of only one of the following
instruction set groups 1) MULTIPLY, ADD, INCREMENT,
COMPARE, 2) MULTIPLY_AND_ACCUMULATE, INCRE-
MENT, COMPARE, 3) DOT_PRODUCT.

We propose that the designer should determine how the
built-in operators will be. Therefore, while developing the ap-
plication, the user has the freedom to define the operators. The
user picks one of the methods while defining an operator: 1)Se-
lect an operator from an already-designed-operators library or

3

invoke a module generating function from the related library.
2)Define the operator with an HDL that the user selects.
RH(+) treats HDL-defined modules as black boxes. Therefore
it can handle different types of HDLs simultaneously. It uses
interface signals to connect the operator to the data path. 3)
Write the behavior of the operator with the same language that
is used for developing an application. LRH(+) is the language
that we propose as a solution. In that case, the basic operations
in the operator definition must be introduced to the system by
using the methods described above.

The operators can be defined globally as well as locally
for each loop or function. This flexibility will give the chance
for run-time reconfiguration of the soft-processor, i.e. for each
function and loop, the instruction-set and data-path will be
reconfigured if it is desired by the user. Each operator must
have a name specified by the user. However, the same name
can be given to operators of similar nature so that it will make
code development much easier. This can be explained with a
simple example: Assume that in a function, there is an addition
operation acting on scalar variables. Let its name be "+" .
Assume that in another function there are two vectors of the
same size and we want to realize a vector addition. We can
also set its name as "+". It is the job of the compiler to map the
same "+" to the related hardware unit. Actually, the front end
compiler must attach an attribute to the intermediate format
of the user code so that the back end compiler resolves two
different "+"s in two different functions. An example is shown
in Section V.

Note that our model leaves the decision about some param-
eters like the operator’s opcode, behaviour of the operator, as-
sembly syntax of the operator, register files at which operands
are located, wires defining input and output nets, and physical
addresses for memory locations to the compiler. Further details
about operator definition are explained in Section IV-B.

C. Flexible Data Types

In software development, the application developers use
variables that have different size. Usually they use keywords
like char, int, long to identify the size. However, these key-
words might correspond to different bitsize and format in
each data type might change in each processor. Moreover
for reconfigurable systems, having custom bit-lengths for each
variable causes low utilization of the underlying hardware. For
example, assume that we declare a counter which has to set a
flag whenever it reaches 5. If we use 8-bit Freescale processor
and use unsigned char data type for each variable, then
we have to use either two 8-bit memory locations. Another
solution might be usage of only one unsigned char variable
and partition it so as to access flag and counter in the same
variable. This shows that we will use either 8-bit or 16-bit
memory locations to manipulate 4 bits (1 bit for flag, 3 bits
for maximum value of the counter).

We claim that the user must have the freedom to enter the
size of each variable separately, in bits. Moreover, designers
dealing with processor customization must consider only the
size and format of the variable types, because instruction
generation must be carried out by the compiler, which either 1)
maps operations of the same type to the same processing unit

or 2) maps operations of the same type to different processing
units or 3) sets the reconfiguration parameter so that the
hardware will be reconfigured for different operation types or
operations with different variable size (spatio-temporal map-
ping). Reconfiguration is a user-specified compiler directive
and once it is set, the decision about reconfiguration instances
is given by the design evaluation tool. The compiler also
decides on the size of the datapath.
D. Configurability and Self-Retargettable Compiler

Ideally, a reconfigurable processor must have the chance
of being reconfigured prior to execution of each instruction.
However, reconfiguration is a slower process than computa-
tion. If the size of the target architecture allows, compile-
time configuration might be sufficient. Otherwise, run-time
reconfiguration must be used only when it is necessary. As
a result, spatio-temporal scheduling tools must involve in for
the optimized area-performance objectives of the design.

Since target architecture is fully configurable, initially there
must be no instructions on the processor. The instuction selec-
tion tool must identify all the necessary instructions that will
be used in the application, i.e. a partitioning must be realized
on the design representation graph. Therefore, we claim that
current instruction selection tools need to be improved because
they only extract the critical instructions. Other nodes on the
design representation graph are realized by general purpose
instructions of the processor.

After instruction selection, a template for each instruction
must be automatically generated so that the compiler will
automatically retargets itself for the new instruction set. Hence,
the designer will not spend time in retargetting the compiler.
E. Constraints Setting

An embedded design has to meet several constraints like
area, time, energy, etc. Therefore any embedded application
design tool must support entry of the global and local con-
straints. Since instrcuitons are generated specific to the appli-
cation, behavioral synthesis tools can be used to satisfy both
global and local constraints which appear at functions, loops,
conditional branches and even basic blocks (i.e. remaining
statement blocks)

IV. IMPLEMENTATION OF RH(+)

Base technology used in the implementation is eXtensible
Markup Language (XML) due to its capabilities that are no-
ticed in many works in the literature [3], [4]. XML provides us
with storing data structurally. We have implemented LRH(+)
by using XML. Also, the templates, the operators, the board
definition, the application, the graphs, the constraints, the IR
of the application, and the map of the embedded software
to the hardware are stored in XML format. Because, outputs
of RH(+) IDE is in XML format, it can moved to another
application easily via deserialization of them. Besides, thanks
to eXtensible Stylesheet Language (XSL), data transformation
from XML to the other representations can be achieved via a
set of XSL translation rules.

A. FRH(+)

FRH(+) is the implementation of the RH(+) model. In the
first level, the embedded system designer must define three

4

TABLE I
SYNTAX OF STATEMENTS AND CONDITIONS

Tag Syntax 1 Syntax 2

Statement c = a + b; .=(c, .+(a, b));
d = func1(c); .=(d, .func1(c));

e = d/c*4; .=(e, .*(./(d, c), 4));
Condition (a > b) && (c < d) .&&(.>(a,b), .<(c,d))

application-specific environments: Templates, Board Support
Package (BSP), and Operator Definitions (OPDEF). They
include hardware abstraction required for RH(+) explained in
Section III. Based on these environments, processor config-
uration data is generated automatically. In the second level,
the application with LRH(+) language by taking configuration
data into consideration. Third level meets "efficient mapping of
the designed system to the reconfigurable architecture require-
ment" of RH(+) . At this level, the front end compiler generates
an enhanced and optimized Control Data Flow Graph (CDFG)
. The user-defined constraints and reconfigurability parameters
are used to generate an optimal CDFG. The CDFG is in
XML format and used during instruction selection and parse
tree generation. In the fourth level, a fuzzy expert system is
executed on the CDFG to select the instructions. Behavioral
synthesis is applied on each selected intruction so as to
generate control and data path for each instruction. Instruction
set generator determines the instruction codeword size and the
register file size required for each instruction. It also prepares
the templates for the compiler so that the full assembly code
is generated in the final level.

B. LRH(+)

LRH(+) is a language which facilitates sequential and con-
current programming in the same environment. It includes both
traditional programming constructs and the constructs special
to Custom Hardware (CH) which utilizes reconfigurable and
nonreconfigurable parts at the same time on the same device.
In addition, it includes structures proposed in FRH(+).

There are two data-types in LRH(+). These are general and
array. The parameters to define a variable with general data
type are variable name, size in terms of bits, location and
initial value of the variable. Location information is retrieved
from Templates or definitions at Application Development
level of the FRH(+) since embedded system designer can also
add location definitions at application level. Array data-type
requires size of array and initial values of its elements whose
sizes are also given in terms of bits. It should be noted that
new data-types can be generated by using these data-types.
Data types like char, int, long can easily be with general type.

In LRH(+), we propose a syntax which is different than
traditional languages used in embedded systems programming.
LRH(+) compiler also supports traditional syntax indicated as
Syntax 1 in Table I. However, we advise the designer to use the
new syntax shown as Syntax 2 in Table I, because this syntax
has an advantage that each operator can have more than two
operands. Since the underlying processor is customizable, it is
not unlikely to have a operator with more than two inputs on
the data-path.

In LRH(+), each statement in the code has a chance to
operate concurrently. Data dependency between the statements

dictates the sequential behavior between the statements. How-
ever, "?" operator can be used to impose a sequential behavior
between two data-independent statements. For example, con-
sider program segment in Figure 1(a). Assuming that each
statement has identical execution times, the execution order
of the segment is found as it is shown in Figure 1(a). In this
figure, "s" keyword represents execution order. However, if a
sequential behavior is desired by the user then "?" operator
must be prepended to line l4, shown as modified code in
Figure 1(b). As a result, execution becomes sequential

Program Segment Execution
order

l1: .=(c,.+(a,b)); s1: l1, l4
l2: .=(d,.*(c,e)); s2: l2, l5
l3: .=(f,.+(d,k)); s3: l3
l4: .=(g,.-(a,b));
l5: .=(h,.+(g,i));

(a)

Program Segment Execution
order

l1: .=(c,.+(a,b)); s1: l1
l2: .=(d,.*(c,e)); s2: l2
l3: .=(f,.+(d,k)); s3: l3
l4: ?.=(g,.-(a,b)); s4: l4
l5: .=(h,.+(g,i)); s5: l5

(c)

Fig. 1. Data dependency graph for delaying example

C. Constraint and Configurability Setting

In our implementation, configurability is a global option.
Global and function level constraints can be processed.

D. Instruction Selection and Generation

Instruction selection is done by a fuzzy expert system
based on FuzzyClips [15]. By using the CDFG, it extracts
recurring subgraphs and sets of subgraphs that can execute
concurrently. Then using behavioral synthesis as a subroutine,
it evaluates the area and time costs of operations, subgraphs
and concurrent candidates. This information is passed to the
fuzzy expert system and the set of selected instructions are
passed to the graph evaluator. The best set is selected based
on the constraints and the adaptive threshold. The selected
instructions are marked on the CDFG and the procedure
repeats itself from the extraction of subgraphs phase until all
nodes are marked.

After the instructions are selected, the CDFG is modified
so that each recurrent subgraph or each set of concurrent
subgraphs selected as an instruction is compressed to a node.
The related hardware modules are generated and a node-
based decision is taken for reconfiguration by using data
dependencies and constraints.

A register file is generated based on the assumption that
each instruction fetches the operands from a register file and
writes the result to the register file. The basic reason for this
assumption is that RAM blocks in FPGA support single read-
write in each access. Register file can contain registers with
different widths.

An instruction template is generated for each instruction.
The template generator assumes that the operands have to
be moved from the memory to the registers and the output
can reside in register(s). For example, consider the statement
.=(t4,.+(t4,t3)) in Figure 4. It is simply the addition of two
numbers (t4 and t3) and the result is written back in t4.
Assume that t4 and t3 are defined as 8 bit scalars using General
data-type. Assume that a scalar adder and store instruction is

5

% scalar addition .+(t4,t3)
MOV RG8_0 op1
MOV RG8_1 op2
PLUSG8G8G8_0 RG8_0 RG8_0 RG8_1
% scalar store .=(t4,...)
MOV op2 RG8_0

Fig. 2. A sample template generated by the compiler for add

selected as an instruction for this operation. Then the related
template is generated as shown in Figure 2.

MOV is a keyword that realizes the movement from memory
to the register file. There are as many MOVs as the number
of inputs. Register names starts with either RG or RA. RG
registers stand for general register type. These are in the
block RAMs of the FPGA. RA registers represent array type
registers. These registers are distributed in the FPGA. A
bulk move from distributed memory to distributed register
file is realized when RA is the target register. The number
following RG or RA represents the wordlength of the register.
The numbers separated by "_" represent the instance of the
register. For example, there are two RG8 registers in the
sample template, namely RG8_0 and RG8_1. The operands
of the instruction starts with op1, op2,... and they are as many
as inputs of the instruction. Each instruction starts with its
node name. It should be noted that the compressed nodes are
given special names by the instruction generation module. If
an operation does not contain alphabetical characters, special
names are given in a way not to coincide with other instruction
names. For example, PLUS is given for "+" operand. It should
be noted that the compressed nodes are given special names by
the instruction generation module. Type and size of the regis-
ters are appended to the node name prevent misinterpretation
of the instruction.

Note that the register and operand instances, and MOV
instructions are dummy, i.e. they are replaced with the correct
instances by the compiler. Actually, the instances of all regis-
ters and operands start with 0 in a template of an instruction.

Based on the number of instructions and number of inputs,
the machine code of instructions are automatically generated
with a predefined format. In addition to the instructions cov-
ered in the CDFG, instructions like MOV, RECONFIGURE,
NOP, STOP are always included to the set.

E. Compiler

The compiler firstly converts the modified CDFG to a parse
tree. Then it calculates the minimum size of the register file by
using the templates. This size can be increased by the compiler
if the register size does not suffice during code generation.
Note that reduction is always possible by tightening area
constraints.

During the traversal of the parse tree two lists for registers
are updated to monitor status of the registers. The first list
keeps track of busy registers. A busy register means a register
which is occupied at that time. The second list keeps track
of the operand which makes the register busy. The compiler
generates the assembly code for each node in the parse tree if
its siblings have already been processed. Therefore the output
of each sibling is searched in the second list so as to see
whether it appears. If it is the case, then the related MOV
instruction in the template is skipped and the busy flag in the

TABLE II
OPERATION DEFINED FOR MOTION INTENSITY CALCULATOR EXAMPLE

OP
Name

Input1
Type

Input2
Type

Output
Type Description

>= General General General Bigger or Equal
< General General General Smaller
+ General General General Integer Addition
* General General General Integer Multiplication
/ General General General Integer Division

root General - General Root
++ General - General Increment

square Array - Array Square amount of
each index in array

+ Array Array Array Addition of each
index in 2 arrays

[] Array General General Amount of the spe-
cial index in a array

first list is set. Otherwise, an empty register is searched in
the first list so as to replace the related dummy register with
the empty register. Then the status of the selected register is
changed from empty to busy and the second list is updated
with the output of the sibling. As soon as the related code
is generated, the status of the registers using the outputs of
the siblings are reset to free. There exists no case where all
registers are busy because the size of register file is calculated
prior to compilation.

After the assembly code is generated, then machine code is
generated by using the instruction machine code explained in
Section IV-D

V. ILLUSTRATIVE EXAMPLE

In this section we consider a motion intensity calculator
and implement it using RH(+)IDE. In BSP, we define two
RAMs to store the general and array variables separately, and
a serial bus to put the MPEG-7 representative of each block
motion block to the array memory. For this application, we
defined the operators shown in Table II in OPDEF. Six general-
type (average, intensity, index, t3, t4, 12) and five array-
type (motionVectorX, motionVectorY, T1, T2, T) variables are
defined.

Figure 3 demonstrates the code we write in RH(+). This
function gets two arrays, motionVectorX and motionVectorY
with length of 12 and then calculates the square of each item
in these arrays using "square" operation and the results are
written to T1 and T2 arrays, respectively. Next, in a loop,
each item in T1 and T2 are added, square root of the sum is
calculated and the result is added to t3. After the loop, average
is obtained by dividing t3 to length of arrays, i.e. 12. At the
same expression the two square arrays are added and saved
in array T. Then the root of each value in T is assigned to
t3 and then inside an IF statement, it is checked whether the
amount of t3 is bigger than or equal to average, by using ">="
operator. If it is bigger then t3 is added to t4. Afterwards, the
intensity variable is calculated as the ratio of t4 to 12 (length
of arrays).

The produced .cdfg file of this design is about 2000 lines
and it is inappropriate to demonstrate this file in this paper.
However, we try to show a part of this file in Figure 4. This
figure indicates the generated code for expressions ".+(t4,t3);"
and ".+(T1,T2);". The compiler also generates an assembly
file which consists of 32 lines of code. We do not put this
generated code here because of space restrictions.

6

Function;MotinIntensityCalculator:F1;F1;
Expressions;exp1;exp1;

.=(T1,.square(motionVectorX));

.=(T2,.square(motionVectorY));
ExpressionsEnd
Loop;L1;L1;

.<(index,12);
Expressions;exp2;exp2;

.=(t3,.+(t3,.root(.+(.[](T1,index),.[](T2,index)))));

.=(index,.++(index));
ExpressionsEnd

LoopEnd
Expressions;exp3;exp3;

.=(average,./(t3,12));

.=(T,.+(T1,T2));
ExpressionsEnd
Loop;L2;L2;

.<(index,12);
Expressions;exp4;exp4;

.=(t3,.root(.[](T,index)));
ExpressionsEnd
If;IF1;IF1;

.>=(t3,average);
Expressions;exp5;exp5;

.=(t4,.+(t4,t3)); //selected statement
ExpressionsEnd

IfEnd
LoopEnd
Expressions;exp6;exp6;

.=(intensity,./(t4,12));
ExpressionsEnd
FunctionEnd

Fig. 3. LRH(+) code of Motion Intensity Calculator

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a model, RH(+), for
embedded system development on run-time reconfigurable
hardware. Based on this model, we have implemented a
design environment which includes a framework FRH(+), a
new design language LRH(+), an instruction selection and
generation tool and a compiler. The LRH(+) language enables
the user to develop the application with flexible data types
and operators. It generates an extended CDFG which is an
intermediate representation in XML format. The instruction
selection/generation toolbox generates the the complete in-
struction set from the CDFG. The compiler automatically
retargets itself for the new instruction set.

As the current work we try to implement a runtime recon-
figuration of the processor, i.e. to activate RECONFIGURE
instruction. Another issue is the automatic generation of the
whole processor with its control unit and data path being
connected to. Finally, we are dealing with the integration of
these tools in the same development environment.

REFERENCES

[1] Altera Corporation, “Nios embedded processor,” 2007.
[2] J. A. Bower and et.al., “A java-based system for fpga programming,”

FPGA World Conference, 2008.
[3] W. O. Cesario and et.al., “Colif: A design representation for application-

specific multiprocessor socs,” IEEE Des. Test, vol. 18, pp. 8–20, 2001.
[4] F. P. Coyle and M. A. Thornton, “From UML to HDL: A model driven

architectural approach to hardware-software co-design,” ISNG, pp. 88–
93, 2005.

[5] R. Damasevicius, “A subset-based comparison of main design lan-
guages,” Inf. Tech. Cont., Technologija, vol. 1, pp. 49–56, 2004.

[6] A. Fauth, J. V. Praet, and M. Freericks, “Describing instruction set
processors using nML,” EDTC’95, pp. 503–507, 1995.

[7] Freescale Semiconductor Inc., “CodeWarrior development tools,” 2007.

-<component.type>
<!–specifications–>
<Type>General</Type>
- <GeneralTypeData>

<Length>8</Length>
<Value>0</Value>
<Location>MEM1</Location>
<refName>t4</refName>

</GeneralTypeData>
- </component.type>

- <component.type>

<!–specifications–>
<Type>General</Type>
- <GeneralTypeData>

<Length>8</Length>
<Value>0</Value>
<Location>MEM1</Location>
<refName>t3</refName>

</GeneralTypeData>
- </component.type>

- <SubExpression>

<Number>754</Number>
<Name>SE85</Name>
<!–specifications –>
<OpName>+</OpName>
- <OperandType>

<Location>MEM1</Location>
<Type>General</Type>

</OperandType>
- <OperandNames>

<string>+</string>
<string>t4</string>
<string>t3</string>

</OperandNames>
</SubExpression>

-<component.type>
<!–specifications–>
<Type>Array</Type>
- <GeneralTypeData>

<Length>8</Length>
<Value>0</Value>
<Location>MEM1</Location>
<refName>T1</refName>

</GeneralTypeData>
- </component.type>

- <component.type>

<!–specifications–>
<Type>Array</Type>
- <GeneralTypeData>

<Length>8</Length>
<Value>0</Value>
<Location>MEM1</Location>
<refName>T2</refName>

</GeneralTypeData>
- </component.type>

- <SubExpression>

<Number>745</Number>
<Name>SE660</Name>
<!–specifications –>
<OpName>+</OpName>
- <OperandType>

<Location>MEM1</Location>
<Type>Array</Type>

</OperandType>
- <OperandNames>

<string>+</string>
<string>T1</string>
<string>T2</string>

</OperandNames>
</SubExpression>

Fig. 4. Intermediate CDFG code generated for scalar and array adders

[8] R. E. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE
Micro, vol. 20, pp. 60–70, 2000.

[9] A. Halambi and et.al., “A customizable compiler framework for embed-
ded systems,” SCOPES, March 2001.

[10] T. Kambe, A. Yamada, and M. Yamaguchi, “Trend of system level design
and an approach to c-based design,” Microelec. Jour., vol. 33, pp. 875–
880, 2002.

[11] B. Mei and et.al, “Architecture exploration for a reconfigurable archi-
tecture template,” IEEE Des. Test, vol. 22, pp. 90–101, 2005.

[12] S. J. Mellor, “Executable and translatable UML,” 2003.
[13] K. M. Nikolaos S. Voros.
[14] Open SystemC Initiative, “www.systemc.org,” 2009.
[15] R. Orchard, “Fuzzyclips version 6.04a Users’ guide,” 1998.
[16] I. R. Quadri, S. Meftali, and J.-L. Dekeyser, “High level modeling of

dynamic reconfigurable fpgas,” Int. Jour. of Reconf. Comp., 2009.
[17] C. Raistrick, P. Francis, and J. Wright, Model Driven Architecture with

Executable UML(TM), New York, NY, USA, 2004.
[18] O. Schliebusch and et.al., “Architecture implementation using the ma-

chine description language lisa,” ASP-DAC’02, pp. 239–244, 2002.
[19] Silicon Hive, “HiveCC software development kit v3.5,” 2009.
[20] SpecC Technology Open Consortium, “Specc language reference man-

ual, version 2.0,” 2002.
[21] Synfora Inc., “www.synfora.com,” 2009.
[22] Target Compiler Tech., “CHESS/CHECKERS:A retargetable tool-suite

for embedded processors,” Belgium, Tech. Rep., June 2003.
[23] S. Vassiliadis and et.al., “The MOLEN polymorphic processor,” IEEE

Trans. Comp., vol. 53, pp. 1363–1375, 2004.
[24] Xilinx Inc., “www.xilinx.com,” 2007.
[25] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of

fpga-based soft processors,” CASES’05’, pp. 202–212, 2005.
[26] V. Zivojnovic, S. Pees, and H. Meyr, “LISA-machine description

language and generic machine model for HW/SW co-design,” IEEE
Workshop on VLSI Signal Processing IX, pp. 127–136, 1996.

