A Fast and Efficient Algorithm for the

Multiplierless Realization of Linear DSP

Transforms

Arda Yurdakul and Giinhan Diindar

Abstract

In this paper, a fast algorithm having a pseudopolynomial run-time and memory requirement

in the worst-case is developed to generate multiplierless architectures at all wordlengths for con-

stant multiplications in linear DSP transforms. It is also re-emphasized that indefinitely reducing

operators for multiplierless architect
reduction, techniques like resource

results are also presented.

Information About Authors:
Assist. Prof. Dr. Arda Yurdakul
Computer Engineering Department
Bogazigi University

Bebek 80815, ISTANBUL, TURKEY

e-mail: a.yurdakulQieee.org

Contact Information for the
Corresponding Author

Arda Yurdakul

Computer Engineering Department
Bogazici University

Bebek 80815, ISTANBUL, TURKEY

e-mail: a.yurdakul@ieee.org

ures is not sufficient to reduce the final chip area. For a major

folding must be used. Simple techniques for improving the

Assoc. Prof. Dr. Giinhan Diindar

Electrical and Electronics Engineering Department
Bogazi¢i University

Bebek 80815, ISTANBUL, TURKEY

e-mail: dundar@boun.edu.tr

I. INTRODUCTION

There has been an intensive study on the development of algorithms for the multiplier-
less realization of constant multiplications in DSP algorithms in recent years for smaller
hardware area [1]-[9]. This is done by generating trees composed of simple operators like
adders and subtractors. It has been proved that forming such a tree in place of multipliers
is an NP-complete problem [9].

In literature, most of the algorithms make some assumptions to minimize the number of
adders. Among these studies, the RAG-n algorithm [3] is the most notable one, because
it can theoretically produce optimal results when all odd coefficients in the system have
a single coefficient cost of 1 or more. To achive this, RAG-n algorithm uses two memory-
inefficient look-up tables that are generated by the MAG algorithm [4] in exponential time.
The main drawback of the look-up-table-based systems is the limited physical memory,
which cannot provide infinite storage. RAG-n algorithm also suffers from this well-known
fact: The look-up tables can represent the coefficients only up to 12-bit precision. For
larger multipliers, fast heuristics are present in RAG-n. As a result, for large integer
multiplications, the adder tree produced by RAG-n can employ more adders than necessary
due to the limited table-length. All the remaining algorithms use heuristic methods for
all wordlengths by using as little memory as possible at a fairly good speed at a cost of
near-optimal trees. This is usually sufficient, because it has been proved that minimizing
number of adders in multiplications indefinitely is unnecessary because in this case, area
and power due to storage elements and adders at the accumulator units begin to dominate
[3], [8]. Therefore, other techniques like register minimization, resource folding must be
incorporated for minimum area.

The proposed algorithm is developed for the faster generation of synchronous, fully
pipelined and multiplierless architectures for realizing multiplications of an input with a
set of constants: FIR filters, multirate FIR filters in the same fold, constant multiplications
with switching inputs, linear transforms like DCT with a serialized input. The essence of
the algorithm lies in blindly realizing all constant multiplications without taking timing
into consideration. After this, a careful scheduling must be done to minimize area due
to registers and adders at the accumulator units. This paper concentrates merely on
multiplierless realization of constant multiplications.

The run-time of the algorithm presented in this paper is rather fast even on a 486

machine. It synthesizes ordinary FIR filters of moderate length (say 100 taps) in less than
a second. It synthesizes a 3000-tap chirp filter in less than three minutes on a 386MHz
Intel Celeron machine when quantization of coefficients is done using 24 bits [10].

The algorithm explained in this paper uses pattern search as most of the previous
algorithms do. If pattern length is a term defined as the number of nonzero terms in a
pattern, the common trend in previous algorithms is to make the pattern search starting
from a pattern length equal to the coefficient wordlength and ending at a pattern length
of 2. Our algorithm makes the pattern search at a pattern length of 2 throughout the
process, similar to that of [6] which is used only for multiplierless realization of FIR
filters. The worst-case run-time and memory requirement of this algorithm is O (|S|m)
and O (|S| m2), respectively, where m is a number determined by counting the nonzero
entries in the Canonic-Signed-Digit (CSD) representation of all constants separately and
picking the maximum count, and |S| is the cardinality of the kernel set, S, which is used
to generate all coefficients in the system by shifting and/or negating the elements in S.

In the next section, the proposed algorithm is explained with the evaluation of the worst-
case run-time and memory requirements of the algorithm. Following it, the refinements
that can improve the results found by the basic algorithm, are explained. Section IV is
used to demonstrate the performance of the algorithm on a set of experiments. The final

section concludes the work .

II. THE ALGORITHM

The new algorithm is based on iteratively combining two nonzero terms in order to
form an adder tree which can be used to generate all coefficients in a DSP system. This
algorithm runs safely on all systems using any form of binary representation, i.e. two’s
complement, signed digit (SD) or canonic signed digit (CSD). In this paper canonic-
signed-digit (CSD) representation is emphasized, because CSD is proved to be the unique
representation with minimum nonzero entries [11]. In CSD and SD representations, a
nonzero term means 1 and —1 while it means only 1 in two’s complement representation.
In our algorithm, the definition of a nonzero term is extended to include a two-term or a
negative form of the two-term as well. A two-term is defined as the combination of two
nonzero terms such that one nonzero term appears at the zeroth bit position and the other

nonzero term appears at the ¢’th bit position. The properties of a two-term can be listed

as follows:
e A two-term has a length of c.

o A two-term has a sign, ¢, calculated as

¢ = sgn (sose) 5 (1)

where sgn (.) is the sign function, ¢y and ¢, are the signs of the nonzero terms at zeroth
and c’'th bit positions, respectively.

e A two-term has an odd value, v, and calculated as

v =g + 6.0.2°, (2)

where vy and v, are the values of the nonzero terms at zeroth and c¢’th bit positions.

e A two-term has an order, ¢, which is calculated as
i = max (ig, %) + 1, (3)

where ig and 4. are the orders of the nonzero terms at zeroth and ¢’th bit positions. (By
definition, the nonzero entries 1 and —1 are of zeroth order.)

Ezample 1: The two-term ¢; = 10001, is of length 4, sign 1, value 17, and order 1.
¢ The replica, r, of a two-term is the appearance of a two-term in coefficients.

Ezample 2: In coeflicient 1010101, the replicas of two-term ¢; of Example 1 are Ry, =
{ri,,r,} = {t1,t1 << 2}.

Using the properties of the two-term, an algorithm can be developed to iteratively form
an adder tree for the multiplierless realization of a set of coefficients, N. At each iteration,
the two-terms are combined to form new two-terms of higher order. The algorithm must
realize all coefficients in N which can be reduced to a kernel set S such that for each
n € N, there exists exactly one s € S such that n is the shifted and/or negated version
of s. So, it is sufficient for the tree-generation part of the algorithm to run over the set
of S rather than N. The complete algorithm is presented in Fig. 1. The operation of the
algorithm is explained with the help of below comments by using the numbers shown on
the left of each line of Fig. 1 as the individual steps:

Step 1: Constants in N are scaled so that they are odd and positive. These odd
numbers form the kernel set S. Note that 1 is not an element of S. Note also that all

members of N can be represented using S

Step 2: The solution set, TF, that will contain the two-terms to realize S, is initialized
as an empty set.

Step 3: To find at least one two-term in S, there must be at least two nonzero entries
in any s € S. Therefore the condition in ”while” loop satisfies the existence of at least one
two-term in the loop, i.e. T' # (). Each iteration determines the order of the two-terms in
sets T and Tp.

Step 4: To form set T, all possible pairings of all nonzero terms within each coefficient
in S must be examined. The unique one form the set T'. containing all available two-terms
at that iteration level.

Step 6-7: For each two-term ¢ in 7', a replica set R; is obtained. Each set contains all
replicas that can be formed by negating and/or shifting the two-term ¢.

Step 8: At each iteration within the inner loop (”loop” of Fig. 1), the most desirable

two-term at the current iteration is picked. This loop continues until all replica sets are

emptied by the innermost loop ("for” of Fig. 1). A two-term t* € T if |Ry<| = rmax-
If there exists more than one t* satisfying this condition then the one with ¢ = —1 is
chosen because hardware realization of a subtraction operation at lower orders (defined by
equation 3) is much cheaper than a subtraction operation at the higher orders. If there is
no or more than one t* satisfying this condition, then ¢* with minimum length is chosen.
These conditions help minimization of the final chip area.

Step 9-12: At each iteration within the innermost algorithm (”for” of Fig. 1) the
most desirable replicas of t* w’ll be selected. Replica r from Ry is selected in a way that
maximizes the number of selected replicas from Ry« such that each nonzero term in all
coefficients in S is represented by at most by one replica. Since each replica r in Ry
has two nonzero entries, each of these nonzero entries may appear in other replicas of the
same two-term (i.e. Ry) or in the replicas of the other two-terms (i.e. Ry, Vt # t*). So,
by selecting r, all other replicas that are implied by r are inherently handled. Therefore
they must be removed from related sets, i.e. Ry, dt € T. The innermost loop continues
until the Ry~ is emptied.

Step 13: Include ¢* to the solution set Tx. Note that the cardinality of set T (i.e.

|Tr|) will determine the number of additions and/or subtractions to form all numbers in

S after the "while” loop is exit.

Step 14: Return Tr and S that will be used to form N. The number of adders to
realize the coefficients in N will be given by |Tx|.

Ezample 3: Assume that the set of coefficients for multiplierless realization is N =
{n1,mn9,n3,n4} = {100101,10101010, 1010101, 1000} . Coefficient set N is the input to the
algorithm. The operation of the algorithm on this coefficient set is shown in TABLE I. In
this figure, the I column stands for the ”while” loop, the J column stands for the ”loop”
loop, the K column stands for the ”for” loop in TABLE I. The numbers shown in R;
column needs additional explanation. For example, R3 = {0, 2} s, means that 3 has two
replicas in number si: The two-term t3 as it is and the two-term t3 shifted left two times.
Note that the outputs of the algorithm are S and T and the whole system will be realized
by three adders and five shifts.

The worst-case run-time and memory requirement of the algorithm base on two vari-
ables: m is a number determined by counting the nonzero entries in the CSD representation
of all constants separately and picking the maximum one and |S| is the cardinality of the
kernel set S.

Proposition 1: The new algorithm has a worst-case run-time of O (|S|m).

Proof: Let’s assume that the outmost loop (i.e., the "while” loop in Fig. 1) iterates
I times. The following derivation is done for the 7’th iteration step of the ”while” loop.
Each iteration step determines the order of two terms selected during that iteration:

The process of forming two-terms and their related replica sets for each s € S takes
ms,; time where my ; is the number of nonzero digits in number s at iteration step ¢. Since
this process can be done in parallel for all s € S, it takes m; time for all s € S where

m; = MaXscg Mg ;. This process produces | R, ;| number of replicas for each s € S:

Mg ; . 1
|Rs’i _ EN) _ Mg (n;s,l)) (4)
2
Note that
Uter Rt = UsesRs;i = R; (5)

Here, R ; is the replica set of any s € § and R; is the universal set for the replicas at the
iteration level 4.
After this process, the inner loop (i.e. ”loop” in Fig. 1) is taken. In this loop, each

r € R; is handled such that either the replica is selected or it is removed from the replica

set. Since initial steps of "loop” are negligible for the calculation of the iteration time of
the ”loop”, then it can be claimed that the "loop” and the ”for” loop in Fig. 1 can be
handled as a single loop that iterates J times. Since the algorithm shown in Fig. 1 runs
for each R;;, then J = ;.1 J;. To calculate J, it can be assumed that the algorithm
runs for each R, ; due to the Equation 5. Then

J=3"J. (6)

sES

Js can be derived as follows: At the first iteration of ”loop”, a replica r is selected such
that it realizes an s € S (i.e. j = 1). This process removes (ms; — 2) replicas from
R ; due to each nonzero digit in 7. Since r will be replaced by its related two-term ¢, it
will also be removed from R, ;. Then the total number of replicas removed from R ; is
2 (ms,; —2)+1 = 2m,; — 3. This operation also reduces the number of nonzero digits in s
by 2. By putting two-term £* in place of the erased replica, the number of nonzero digits
in s is increased by 1. However, this new nonzero digit in s does not appear in any of the
replica sets at the current iteration of the ”while” loop. Therefore its effect to .J; is null.
The inner loop iterates until R; = (). This can be formulated as follows by using Equation
4:

mei(msi—1) & B

B manh WCOWEL B (7)
where my; ; = mg; —2(j —1). With this fact, the above equation reduces to the following

quadratic equation:

2J% — (2my; — 1) Js + =0 (8)

When the above equation is solved for J; in terms of my ;, it is obtained that

7= | (9)

So, the i'th run-time of the ”while” loop can be determined by combining the time for
finding of two-terms and forming related replica sets with J which is given by Equation 6:

mi+J:mi+Z{%J (10)
seS

Since the "while” loop iterates I times, the run-time of the complete algorithm, A, is given

as

A:émi+i2{m;’ﬂ (11)

i=1s€S

10

At each iteration of the while loop, the number of nonzero digits in all s € S halves. For
example if maximum number of nonzero entries in s € S is mg before the first iteration
ms

ends, it is [%=] at the end of first iteration. This phenomenon is shown in Fig. 2 for

mg = 7. Then at the end of i’th iteration, the number of nonzero digits in s € §' is:

. ms
Mg .;

=% (12)
mi=[3];

where m = maxgcgms. Combining the above equation with Equation 11, the following

expression is obtained for the calculation of the run-time:

A= ZM@Z

i=1seS

21+1 (13)

where ||z|| is the integer function which determines the integer part of x. Before working

”while” loop, I, must be

more on the above equation, the number of iterations for the
determined: The ”while” loop stops when there is only one nonzero digit in all s € S.

Then using Equation 12, I can be found in terms of m.

I = [logym] (14)

Note that I is the maximum order of the two-term and the depth of the generated adder
tree. Combination of equations 13 and 14 determines A, i.e. the run-time of the whole
algorithm. Since run-time of an algorithm is given by the order of growth, i.e. O (A), all

ceiling, floor and integer functions can be dropped:

O(A) =SB B+ s (T8 ™ #r)

15
= (1-5%) @m+ Tyesms) 1

In the above equation,) . gms determines the O (A). The worst case happens when all
s in S have the same number of nonzero entries. However, usually they don’t have the
same number of nonzero entries. And in the best case, only one s in S is dominant, i.e.
all remaining numbers in S has negligible number of nonzero digits. Then it can be easily
claimed that

O(m) <O(A) <O(|S|m). (16)

Proposition 2: The worst-case memory requirement of the new algorithm is O (|S|m?).
Proof: The maximum memory requirement occurs at the first iteration of the ”while”

loop. This is due to the storage of replica sets. So, the memory requirement of the

11

algorithm, M can be written using Equation 4 as follows:

M=Z|Rs|=zwz()(2mz> (17)

sES SES SES

For the worst-case, assume that all numbers in S have the same number of nonzero entries,
i.e. m. Then M will be determined using Equation 17 as follows:
M=0 (Z m2> =0 (|sIm?). (18)
seS

III. REFINEMENTS

The effective adder count is different than the adders/subtractors count: The cost of a
subtraction is bigger than that of an adder and the cost of a negator is smaller than that
of an adder. Therefore effective chip area will be less if the following refinements are done:
1. Negative additions can be replaced by regular adders and inverting the sign of the
two-term in subsequent two-terms as shown in Fig. 3.

2. If a two-term is a subtraction and it appears as a subtrahend more than it does as
a minuend in subsequent two-terms, then the inputs are switched and the sign of the
two-term in subsequent two-terms is inverted. This is shown in Fig. 4. This refinement
process produces better results if the conversion starts from the highest order two-terms.
3. Subtractions can be replaced by putting a negator at the output of the operator which
is used as the subtrahend and converting the subtractor to an adder. This really produces
very efficient results if an operator, whose output is used as an subtrahend n times, satisfies

following equation:

Gnegator T T X Gadder < 1 X Qsybtractor (19)

Here, agdders Qsubtractor a0d Gpegator, stand for area costs of an adder, a subtractor and a
negator respectively. This totally depends on the technology used and the architectures
of the selected modules to realize the operations. An example of this refinement is shown

in Fig. 5.

IV. EXPERIMENTS

The new algorithm is applied on a number of examples in the literature. In all examples
CSD representation is used. The results are presented between TABLE II-TABLE VII.
In the first four tables, the term org stands for original number of operators (adders,

subtractors or negative adders to realize constant multiplications) and shifters, and the

12

term New Alg. stands for the results found by the new algorithm proposed in this paper.
The numbers separated from these labels by underscores stand for wordlengths. For
example B4L0_8 is the 8-bit realization of B4L0.

In TABLE II, two multirate systems at different wordlengths are tested. Here, the terms
B4L0 and B2L3 stand for the four-band block transform whose coefficients are given in
[12] and the two-band three-level wavelet transform whose coefficients are given in [13],
respectively. In B4LO0, all four filters are folded in a single fold. In B2L3, two filters in
the first level are folded in a fold and remaining four filters are folded in another fold,
hence B2L3 is realized by using two folds so that single clock can be used throughout the
system. Therefore the results of the algorithms for B2L3 must be divided by two to find
the operator and shifter values in a single fold. As it is observed here, the new algorithm
produces better results than [9], because the integer programming model proposed in that
paper is equivalent to the single run of the new algorithm. Note that there is a great
improvement in terms of operators and shifters with respect to original values.

In TABLE III, POT stands for the first FIR example in [7] and DCT is the one-
dimensional 8-point discrete cosine transform. In DCT, all filters are folded in a single fold.
Here, again, note that the new algorithm outperforms its precedents in most examples.

TABLE IV and TABLE V are used to compare the performance of recent algorithms
at several FIR filters. S1 and S2 are taken from [1] and L1, L2 and L3 are taken from
[14]. Note that in all cases the new algorithm and [8] produce equal results. However,
there is a strong possibility that our algorithm runs faster than [7] and [8] because they
make pattern search starting from N-bits (usually NV is the wordlength) down to 2 nonzero
terms, but our algorithm always makes the pattern search by using only 2 nonzero terms.
The algorithm of [3] can always produce better results because it uses exhaustive search
in non-unique signed digit representation of the constants at a cost of huge memory and
exponential run-time requirements.

Our tool synthesizes the filters in these experiments in less than a second even on a
33MHz 486 PC. To demonstrate the performance of our tool, a 3000-tap chirp filter of [10]
is synthesized at several wordlengths. The tool is recompiled for a 368MHz Intel Celeron
PC and the benchmarks of TABLE VI are obtained. It should be noted that the first
benchmark also holds on the above-mentioned 486 machine.

TABLE VII is used to demonstrate the effect of refinements. It is not surprising that

13

the total number of operators before and after refinements 1 and 2 are equal. However
the number of adders after refinements 1 and 2 are higher than that is before refinements.
This yields the conclusion that the first two refinements really produce a reduction in area
cost. This fact usually applies to power reduction also. The last supercolumn of this table
(i.e., "After All Refinements’) is prepared according to the fact that the Equation 19 holds

for all n > 2.

V. CONCLUSION

In this paper, an algorithm which uses two-terms for producing efficient multiplierless
architectures for constant multiplications is developed. It is fast, because the pattern
search is realized by using only two nonzero terms throughout the whole procedure and
redefining the two-terms at the end of each iteration. This algorithm can be considered
as the extension of the idea proposed in [9].

This algorithm can be used for constant multiplications in all linear transforms including
multirate transforms if the folding, scheduling techniques are carefully used.

The worst-case run-time and memory requirement of the algorithm are pseudopolyno-
mial. This is an important feature of this algorithm because it produces results comparable
to previously developed algorithms much more faster than the previously developed algo-

rithms by using less memory.

14

REFERENCES

SAMUELIL H.: ’An improved search algorithm for the design of multiplierless FIR filters with powers-
of-two coefficients,” IEEE Transactions on CAS, 1989, 36 (7) pp. 1044-1047.

OH, W. J. and LEE, Y. H.: 'Implementation of programmable multiplierless FIR filters with powers-
of-two coefficients,” IEEE Transactions on CAS II, 1995, 42 (8) pp. 553-555.

DEMPSTER, A. G. and MACLEOD, M. D.: 'Use of minimum-adder multiplier blocks in FIR digital
filters,” IEEE Transactions on CAS II, 1995, 42 (9) pp. 569-577.

DEMPSTER, A. G. and MACLEOD, M. D.: ’Constant integer multiplication using minimum adders,’
IEE Proceedings-Circuits, Devices and Systems, 1994, 141 (5) pp. 407-413.

MEHENDALE M., SHERLEKAR, S. D. and VENKATESH, G.: ’Synthesis of multiplierless FIR filters
with minimum number of additions,” Proceedings of the 1995 IEEE/ACM International Conference
on Computer-Aided Design, 1995, Los Alamitos, CA: IEEE Computer Society Press, pp. 668-671.
HARTLEY, R. I.:’Subexpression sharing in filters using canonic signed digit multipliers,” IEEE Trans-
actions on CAS II, 1996, 43 (10) pp. 677-688.

POTKONJAK, M., SRIVASTAVA | M. B. and CHANDRAKASAN, A. P.: 'Multiple constant multi-
plications: Efficient and versatile framework and algorithms exploring common subexpression elimi-
nation,” IEEE Transactions on CAD, 1996, 15 (2) pp. 151-165.

PASKO, R., SCHAUMONT, P., DERUDDER, V., VERNALDE, S. and DURACKOVA D.:’A new
algorithm for elimination of common subexpression,” IEEE Transactions on CAD, 1999, 18 (1) pp.
58-68.

YURDAKUL, A. and DUNDAR, G.: "Multiplierless realization of linear DSP transforms using com-
mon two-term expressions,” Journal of VLSI Signal Processing, 1999, 22 (3) pp. 163-172.
COLEMAN, J. O.: ’Cascaded Coefficient Number Systems Lead to FIR Filters of Striking Compu-
tational Efficiency,” Proceedings of The 2001 Int’l IEEE Conf. on Electronics, Circuits, and Systems,
Malta, September 2-5, 2001.

GARNER, H. L.: "Number Systems and Arithmetic,” Advanced Computers, 1965, 6 pp. 131-194.
ALKIN, O. and QAGLAR, H.: ’Design of efficient M-band coders with linear-phase and perfect
reconstruction properties,” IEEE Transactions on Acoustics, Speech, Signal Processing, 1995, 43 (6)
pp. 1579-1590.

DAUBECHIES, I.: 'The wavelet transform, time-frequency localization and signal analysis,” IEEE
Transactions on Information Theory, 1990, 36 (7) pp. 961-1005.

LIM, Y. C. and PARKER, S. R.: 'Discrete coefficient FIR digital filter design based upon an LMS
criteria,” IEEE Transactions on CAS, 1983, 30 (10), pp. 723-739.

ool N

© 0 N o

11.
12.

13.

14.

BEGIN(N){

Using N, form the kernel set S;
Tr = 0;

while (3s € S such that more than one nonzero entry is required to represent s) {

Form T,

for each t € T, form Ry;

loop {

}

Tmax = MaXteT |Rt|)

if (Tmax = 0) break;

pick t* such that |R¢+| = rmax;

for each r € Ry~ {

}

Remove implicants of r from R;,Vt € T}

Find s € S such that r exists in s, erase r from s, put ¢* in place of r in s;

Ri =R\ {r};
}
TFZTFU{t*};

return the modified kernel set S and solution set Tr;

}

Fig. 1. The algorithm

15

16

Iteration0:1 0 0 1/0/21 01000100101

lteration 1:0 0 0|, 0 0 0 1,/0 0 0(1 0000 Y

Iteration2:0 0 00 00 04, 00000000 &

y
Iteration3:0 00 0000000000000 ts

Fig. 2. Step by step demonstration of the constant multiplication realization using two-terms.
Note that there are seven nonzero entries in the CSD realization of the number and there are

three iterations to realize the system.

17

'.53:—'51—152 %3:t1+t2

ty=to+t3 — ty=to—1t3

ts=to—13 ts=to+t3

(a) (b)

Fig. 3. Refinement 1: (a)Original form: 1 addition, 1 subtraction, 1 negative addition. Since
negative addition is an addition followed by a negation, this can be interpreted as 2 additions,
1 subtraction and a negation. (b)After the removal of negative additions: 2 additions, 1

subtraction. Gain = 1 negation. Each ¢, stands for a two-term or an input

ta=t—ts
ty=to+ts
ts=to—t3
to=te—t3

(a)

7.532752—151
ta=to—t3
ts=to+t3

t7=ts+13

(b)

18

Fig. 4. Refinement 2: (a)Original form: 1 addition, 3 subtractions. (b)After switching the inputs:

2 additions, 2 subtractions. Each ¢ stands for a two-term or an input

(b)

Fig. 5. Refinement 3: (a)Original form, (b) after refinement 3.

19

|[I[J] K] S T R, [[Re] [tx] v [Tr Comments
0]0 0 s1: 1010101 0
s2 : 100101
110 0 t;: 101 R, = prﬁ U .mwfm = Tarﬁwqﬁww U AT_NL = AOM Mu%w,ﬁ: U ﬁow.mm 4 1]
£, : 1001 Ry =Ru,, ={rs} = {2} | 1
3 : HOOOH Nww = .mww,ﬁ = ﬁﬁmvﬁqw = AOV wwﬁ 2
t1 : 10001 Ry =Ry, ={rs} ={0} 1
t1 1 100001 Rs = Rs,, = {ro} = {0} 1
1/1]0 t 0
111 1] 1 | s :101000¢; Ry ={r3}U{rs} = ,ch&; U ,ﬂorm 2 1 0
sz : 100101 Ry ={rs} = ,ﬂmwmm 1
R;=Rs=10 0
Rs ={ro} = ﬁowﬁ 1
1] 1| 2 | s :00t000t Ry = {ra} ={0},, 1 T3 0
sz : 100101 Ry ={rs} = ,ﬂmwmm 1
R;=Rs=10 0
Rs = {ro} ={0} 1
1 1 3 S1 ¢ OO?OOO? NWH = mm = mw = m» = mm = S 0 T4 S
s2 : 10000t
110]0 {t:} exit from J and K loops
2 O O mm : SOOO? Nwm = .mwm,ﬁ = ﬁﬁpow = ﬁowﬁz 1 A?Lv
t7 : 10000¢, R7 =Ry, = {ru}= ﬁorm 1
21170 te {t:}
2|1 1 s1 : 0000006 Rs=10 0 r10
S92 HOOOO? Nw,w = T;Ew = ﬁowum 1
211 0 {t1,t6} exit from K loop
220 tr {t1,t6}
2 2 1 S1 DDDOOO&@ m@ = Nw,w = S O ﬁHH A?fwmw
s2 : 000007
21210 {t1,t6,t7} exit from all loops

TABLE 1

ITERATIVE SOLUTION OF EXAMPLE 3 USING ALGORITHM OF FIG. 1

EXPERIMENTAL RESULTS: B4L0O-FOUR BAND WAVELET TRANSFORM, B2L3-TwoO BAND

TABLE II

THREE LEVEL WAVELET TRANSFORM

Ezperiments # of shifts # of operations
org | [9] | New Alg. || org | [9] | New Alg.

B4L0_8 80 | 6 5 48 | 4 4
B4L.0_12 112 | 8 7 80 | 7 6
B4L.0_16 160 | 9 8 128 | 10 8
B41.0_24 256 | 15 13 224 | 17 12
B2L3.8 108 | 14 14 72 | 12 10
B2L3_12 180 | 14 14 144 | 22 16
B2L.3_16 234 | 36 26 198 | 38 24
B21.3.24 270 | 44 24 234 | 44 24

21

EXPERIMENTAL RESULTS: POT-EXAMPLE 1 IN [6], DCT-DISCRETE COSINE TRANSFORM

TABLE III

Ezperiments # of shifts # of operations
org | [7] | [9] | New Alg. || org | [7] | [9] | New Alg.
POT 21 T 8 21 | 10 | 9 9
DCT-8 208 | 72 | 10 10 1441 94 | 9 10
DCT_12 272 | 74 | 13 12 208 | 100 | 14 13
DCT_16 352 | 107 | 19 19 288 | 129 | 18 19
DCT_24 544 | 190 | 30 28 480 | 212 | 31 29

22

TABLE IV

EXPERIMENTAL RESuULTS: FIR FILTERS 1

Ezperiments # of operations
org | [8] | [9] | New Alg.

S1 11 | 6 | 6 6

S2 57 | 32 | 30 32

L1 145 | 58 | 60 58

23

TABLE V

EXPERIMENTAL RESuULTS: FIR FILTERS 2

Ezperiments # of operations
org | [3] | [8] | [9] | New Alg.
L2 49 | 22|23 | 23 23
L3 6 (5|5 |5 5

24

TABLE VI

EXPERIMENTAL RESULTS: 3000-TAP CHIRP FILTER

Wordlength (bits) | # of operations | Run-time
8 125 < lsec
12 987 dsec
16 2496 25sec
20 3598 1min30sec
24 4757 2min4bsec

25

NUMBER OF OPERATORS PRODUCED AFTER USING THE NEW ALGORITHM: + : ADDERS, — :

TABLE VII

SUBTRACTORS, + — — :

NEGATIVE ADDERS

Ezperiments Before After After All
Refinements Refinements Refinements
and 2
+ | - | +=>—| + - + | — | negator
B4L.0_8 3 |1 0 3 1 3|1 0
B41.0_12 33 0 4 2 6 |0 1
B41.0_16 216 0 4 4 6 | 2 1
B41.0_24) 7 0 8 4 1] 1 1
B2L3.8 3| 2 0 3 2 3|2 0
B2L.3_12 315 0 5 3 513 0
B2L3_16 9 3 0 9 3 9 |3 0
B21.3.24 8 | 4 0 8 4 8 | 4 0
DCT.8 4 15 1 5 5 73 2
DCT_12 6 | 7 0 6 7 9 | 4 2
DCT_16 1] 7 1 12 7 17| 2 2
DCT_ 24 19 | 10 0 19 10 22 | 7 1
POT 6 | 3 0 6 3 910 1
S1 213 1 3 3 5 | 1 1
S2 15] 15 2 17 15 31 |1 4
L1 25 | 26 7 32 26 54 | 4 6
L2 101 9 4 14 9 19 | 4 1
L3 213 0 2 3 510 1

26

